365bet扑克客户端-beat365进不去-365手机app

opencv python 训练自己的分类器

opencv python 训练自己的分类器

源码下载

一、分类器制作

1.样本准备

收集好你所需的正样本,和负样本,分别保存在不同文件夹

在pycharm新建项目,项目结构如下:has_mask文件夹放置正样本,no_mask文件夹放置负样本

安装opencv,把opencv包里的文件复制到项目mask文件夹下

2.样本制作

(1)图片重命名

方便对样本进行批量处理,我们需要对样本进行重命名,重命名代码如下:

import os

# 正样本的路径

path = r'E:\pycharmWorkspace\maskTest\mask\has_mask'

filelist = os.listdir(path)

# 开始文件名1000.jpg

count = 1000

for file in filelist:

Olddir = os.path.join(path, file)

if os.path.isdir(Olddir):

continue

filename = os.path.splitext(file)[0]

filetype = os.path.splitext(file)[1]

Newdir = os.path.join(path, str(count) + filetype)

os.rename(Olddir, Newdir)

count += 1

# 负样本的路径

path = r'E:\pycharmWorkspace\maskTest\mask\no_mask'

filelist = os.listdir(path)

# 开始文件名10000.jpg

count = 10000

for file in filelist:

Olddir = os.path.join(path, file)

if os.path.isdir(Olddir):

continue

filename = os.path.splitext(file)[0]

filetype = os.path.splitext(file)[1]

Newdir = os.path.join(path, str(count) + filetype)

os.rename(Olddir, Newdir)

count += 1

(2)修改图片像素

将正样本尺寸统一修改为20×20来提高模型训练精度,负样本数据集像素不低于50×50

import cv2

# 代表正数据集中开始和结束照片的数字

for n in range(1000, 1099):

path = r'C:\Users\Administrator\Desktop\mask\mask/' + str(n) + '.jpg'

# 读取图片

img = cv2.imread(path)

img = cv2.resize(img, (20, 20)) # 修改样本像素为20x20

cv2.imwrite(r'C:\Users\Administrator\Desktop\mask\mask/' + str(n) + '.jpg', img)

n += 1

# 代表正数据集中开始和结束照片的数字

for n in range(10000, 10099):

path = r'C:\Users\Administrator\Desktop\mask\no_mask/' + str(n) + '.jpg'

# 读取图片

img = cv2.imread(path)

img = cv2.resize(img, (80, 80)) # 修改样本像素为80x80

cv2.imwrite(r'C:\Users\Administrator\Desktop\mask\no_mask/' + str(n) + '.jpg', img)

n += 1

这里用到了python opencv库,在pycharm 控制台下用pip安装,以下命令可以解决opencv库安装速度慢的问题

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python --no-cache-dir

3.生成资源记录文件

在控制台进入has_mask文件夹

输入以下代码即可创建路径文件

dir /b/s/p/w *.jpg > have_mask.txt

此时在have_mask下就会产生一个have_mask.txt文件,并将其放到mask目录

进入no_mask文件夹,重复上述步骤即可

最后结果如下

之后要对正样本进行预处理,在have_mask.txt末尾加入1 0 0 20 20执行以下代码即可

#后缀

Houzhui=r" 1 0 0 20 20"

filelist = open(r'E:\pycharmWorkspace\maskTest\mask\have_mask.txt','r+',encoding = 'utf-8')

line = filelist.readlines()

for file in line:

file=file.strip('\n')+Houzhui+'\n'

print(file)

filelist.write(file)

filelist = open(r'E:\pycharmWorkspace\maskTest\mask\no_mask.txt','r+',encoding = 'utf-8')

line = filelist.readlines()

for file in line:

file=file.strip('\n')+Houzhui+'\n'

print(file)

filelist.write(file)

4.生成vec文件

在terminal控制台进入到 mask 文件夹,然后输入如下命令

opencv_createsamples.exe -vec havemask.vec -info have_mask.txt -num 400 -w 20 -h 20

opencv_createsamples.exe参数的说明:

-vec

输出文件,内含用于训练的正样本。他应该有一个.vec文件扩展名。

-info

这是指定输入示例集合的文件的名字,包括文件名和在图像中示例目标的位置(例如自己创建的.dat

文件)。

-img

这是-info的替代(必须提供其中一个)。使用-img,你可以提供单个裁剪的正向示例。在使用-img的

模式中,将产生多个输出,且都来自于这一个输入。

-bg

背景图像的描述文件,文件中包含一系列的图像文件名,这些图像将被随机选作物体的背景。

-num

生成的正样本的数目。

-bgcolor

背景颜色(目前为灰度图);背景颜色表示透明颜色。因为图像压缩可造成颜色偏差,颜色的容差

可以由 -bgthresh 指定。所有处于 bgcolor-bgthresh 和 bgcolor+bgthresh 之间的像素都被设置为

透明像素。

-bgthresh

-inv

如果指定该标志,前景图像的颜色将翻转。

-randinv

如果指定该标志,颜色将随机地翻转。

-maxidev

前景样本里像素的亮度梯度的最大值。

-maxxangle

X轴最大旋转角度,必须以弧度为单位。

-maxyangle

Y轴最大旋转角度,必须以弧度为单位。

-maxzangle

Z轴最大旋转角度,必须以弧度为单位。

-show

很有用的调试选项。如果指定该选项,每个样本都将被显示。如果按下 Esc 键,程序将继续创建样

本但不再显示。

-w

输出样本的宽度(以像素为单位)。

-h

输出样本的高度(以像素为单位)。

得到havemask.vec文件

5.训练模型

在当前文件夹下新建start.bat文件加入以下代码

opencv_traincascade.exe -data xml -vec havemask.vec -bg no_mask.txt -numPos 100-numNeg 100-numStages 20 -w 20 -h 20 -mode ALL

pause

在terminal执行start.bat

训练完成后在xml文件下即可看到以下文件,第一个文件即为我们训练好的分类器

二、检验分类器

输入以下代码

import cv2

#加载分类器

mask_detector = cv2.CascadeClassifier(r'E:\pycharmWorkspace\maskTest\mask\xml\cascade.xml')

img = cv2.imread(r'D:\0001.jpg')

#转成灰度图片

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

#进行预测

mask_face = mask_detector.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (50,50), (200, 200))

for (x2, y2, w2, h2) in mask_face:

cv2.rectangle(img, (x2, y2), (x2 + w2, y2 + h2), (0, 255, 0), 2)

cv2.putText(img, "have_mask", (x2, y2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)

cv2.imshow('mask', img)

cv2.imshow('mask', img)

cv2.imwrite(r'D:/test.jpg', img)

cv2.waitKey()

得到如下测试结果 ,效果不是很好

源码下载

相关推荐